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ABSTRACT 
Ridesharing as a mode of travel is a potential solution to a variety of the transportation sectors 45 
toughest challenges including congestion relief, increased energy security, reduced GHG 
emissions and improved travel options. However, the transportation literature provides little 
quantified assessment of ridesharing’s overall potential. This paper proposes a data driven 
methodology for estimating the viability of ridesharing at an organizational scale, and seeks to 
demonstrate its applicability using the Massachusetts Institute of Technology commuting 50 
population as a case. 
The methodology seeks to improve upon previous research by differentiating between modeled 
rideshare potential based on known trip characteristics, and observed rideshare behavior, within 
the same commuting population. By comparing rideshare potential to observed behavior, 
inferences can be made about the relative importance of trip characteristics vs. the importance of 55 
human attitudes in rideshare arrangements. 
MIT-specific results suggest that between 50% and 77% of the commuting population could 
rideshare on a maximum-effort day. These are values significantly higher than the 8% of the 
MIT community that currently choose to rideshare. Maximum achievable VMT reductions from 
daily ridesharing are between 9% and 27%. 60 
The disparity between the modeled potential and observed behavior suggests that human 
attitudes are a much larger barrier to increased rideshare participation than incompatible trip 
characteristics. The results suggest that policy makers seeking to increase rideshare participation 
may want to target large organizations and focus their efforts on personalized travel planning in 
an effort to improve attitudes towards ridesharing. 65 
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INTRODUCTION 
Ridesharing, or carpooling, is a common TDM strategy used throughout much of the US. As a 
travel mode, it is versatile enough that it can successfully provide travel options in congested 
urban environments such as Los Angeles and Washington, DC as well as in less congested rural 
areas. The potential benefits of ridesharing are numerous, and include opportunities to address 70 
some of the transportation sectors toughest challenges including congestion, energy security, 
GHG emissions and the provision of increased travel options. Yet, there exists very little in the 
literature on the realistic potential of ridesharing to address these problems. In fact, the literature 
detailing possible methodological approaches to estimate rideshare viability are even fewer. 
There are a number of potential reasons for this gap in the literature. The most problematic 75 
barrier is the substantial amount of personal information needed to determine rideshare viability 
(detailed information from a large number of people on their daily travel habits) and the 
institutional challenges associated with who collects and has access to this private data. Because 
of this barrier, attempts to understand the viability of ridesharing can be difficult. The prospects 
of a rideshare viability analysis at the scale of an organization are much better; the data 80 
requirements are not as onerous (organization-specific travel surveys are becoming more 
common) and often the institutional and privacy concerns are more easily addressed. 

A further reason for the lack of rideshare market analysis could be the importance of 
human preferences, or attitudes, in the rideshare decision. Taking a quantitative approach to 
measuring viability ignores the fact that choosing to rideshare is based heavily on human 85 
preferences and behavior. The value of a lengthy quantitative analysis may be diminished if one 
believes that human preferences are a much stronger determinant of rideshare participation than 
the physical characteristics of the trip. 

This paper proposes a data driven methodology for estimating the potential of ridesharing 
at an organizational scale. Application of the methodology will be undertaken on a portion of the 90 
commuting population at the Massachusetts Institute of Technology, using detailed commute 
survey data. The methodology will attempt to improve upon previous research by comparing, in 
the context of a single institution, the realistic potential of individual commuters to rideshare 
based on commuter-specific trip characteristics (housing location, vehicle availability, 
arrival/departure time and route deviation time) to observed rideshare behavior within the same 95 
commuting population. By separating rideshare potential from observed behavior, inferences can 
be made about the relative importance of trip characteristics vs. the importance of human 
attitudes in rideshare arrangements. The paper concludes with some model shortcomings and 
recommendations for policy makers.  
 100 

LITERATURE REVIEW 
As mentioned in the Introduction, there is relatively little in the recent literature that has 
attempted to quantify the benefits of ridesharing, and even fewer resources that have proposed a 
comprehensive methodology of doing so. Given the rather substantial amount of personal 
information required to determine rideshare viability, it is conceivable that institutions or 105 
organizations have conducted these types of analyses but have kept the results private.  

Research and consulting reports have been one source for quantified rideshare potential. 
One early attempt was a 1994 report summarizing the effectiveness of transportation control 
measures (TCMs) from various state-level trip reduction programs (1). The report found that the 
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provision of rideshare benefits at a regional level could eliminate up to 2% of VMT and 1% of 110 
trips. More recently, a report titled Moving Cooler estimated the GHG reduction potential from a 
wide range of transportation strategies, implemented individually and as bundles (2). For the 
strategy labeled “Employer-Based Commute Strategies” (of which ridesharing is a component), a 
logit mode choice model (named COMMUTER) was used to estimate mode shifts and the 
resulting change in emissions. The COMMUTER model uses aggregate mode choice data for 115 
different ‘classes’ of metropolitan area. Emission reductions from baseline were estimated at 0.4 
– 2.0% depending on the level of effort employed. The Growing Cooler results require some 
cautious interpretation; as one might expect, ‘employer-based commute strategies’ includes far 
more than ridesharing. In fact, this strategy includes provisions for ridesharing, a transit subsidy, 
modifications in parking policies, a compressed workweek provision and telecommuting. If 120 
ridesharing alone is isolated from this bundle, emission reductions from baseline are towards the 
lower end of the scale (approximately 0.4%). 

Academia has also attempted to measure the potential market for ridesharing. A study by 
Tsao & Lin (3) is one of the more comprehensive attempts to measure the potential of 
ridesharing based on spatial and temporal factors. Unfortunately, the study made several 125 
simplifying assumptions that greatly underestimate the potential of ridesharing, and likely led the 
authors to conclude that the benefits were too small to quantify. The study presented a 
hypothetical metropolitan area with a uniform density of jobs and workers across the entire area. 
This assumption, while simplifying the author’s model specification, conflicts substantially with 
observed metropolitan spatial distribution of jobs and housing. In reality, metropolitan areas have 130 
substantially varied commercial and residential densities. Higher densities of either commercial 
or residential activity, and more specifically, the variability of high densities across a geographic 
area is a major determinant of commuting patterns and increases the likelihood of finding a 
rideshare match. The authors also assumed that participants would only consider sharing a ride if 
they lived in the same two-mile by two-mile square area. While some recent research (4) 135 
suggests that rideshare matching at the residential end of a trip is a strong determinant of 
rideshare potential, Tsao and Lin’s assumption effectively eliminates the ability to match riders 
and passengers based on the route they travel, thereby underestimating the number of potential 
riders. While the methodology was meant to look at rideshare potential in a hypothetical 
metropolitan area, it is important to note that both of the author’s simplifying assumptions lead to 140 
an underestimation of rideshare potential.  

An analysis conducted by students at the University of Toronto (5) attempted to measure 
the number of staff, faculty and students that could rideshare to the St. George campus 
(downtown Toronto), based on data provided by the university administration. The study used a 
GIS approach to identify common clusters of commuters that were traveling to campus. It was 145 
assumed that shared rides would only occur between drivers and passengers living within a 3 km 
radius of one and other. This residential proximity assumption is similar to the one used by Tsao 
and Lin, and could limit some mid-trip pairings. Commuters were only considered as matches if 
they were leaving their residence within the same 30-minute period. Unfortunately, due to data 
limitations, only AM residential departure times were available, making any assessment of return 150 
trip (or roundtrip) rideshare viability impossible. The analysis found that during morning 
commute hours (7:00 – 10:30am), 1,461 of 3,030 drive trips (48%) were suitable for ridesharing 
based on residential proximity and similar residential departure times. Had roundtrip matching 
been possible, the expected match rate would be lower.  
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OVERVIEW OF MIT 155 
MIT’s main campus is located in Cambridge, MA directly across the Charles River from Boston, 
MA. The Institute is home to approximately 22,000 faculty, staff and students, of which 
approximately 18,000 are employed or study on the main campus in Cambridge (~8,000 faculty 
and staff, ~10,000 students) (6). MIT is well served by transit with access to the Massachusetts 
Bay Transportation Authority’s (MBTA) Red Line at Kendall Square, two limited-stop bus 160 
services (the CT1 on Massachusetts Ave. & the CT2 on Vassar St.), and five regularly scheduled 
bus services (the #1, #64, #68, #70 & #85). Access to the MBTA commuter rail system is 
possible via the Red Line at South Station and at Porter Square Station, and via the MIT-
supported E-Z Ride bus shuttle with service to North Station (7). MIT owns approximately 4,000 
parking spaces and leases an additional 500 spaces. (Personal Communication). 165 

The high level of transit service and MIT’s location in relatively dense Cambridge, MA 
are two reasons that the use of transit and non-motorized transport are higher than in other parts 
of the Boston metropolitan area and much higher than the US average. Table #1 summarizes 
mode choice for staff and faculty at MIT, in Cambridge, MA, in the Boston Metropolitan 
Statistical Area (MSA) and across the US. 170 

TABLE #1: Journey to Work Mode Share in 2008 

Drove Alone 28.2% 29.9% 69.1% 75.5%
Rideshare 8.2% 4.6% 8.2% 10.7%
Transit 35.7% 27.2% 11.7% 5.0%
Bike, Ped & Other 18.6% 32.6% 6.9% 4.7%
Not on Campus 9.3%
Work from Home 5.7% 4.1% 4.1%

Journey to Work Mode Share, 2008

MIT (Faculty & 
Staff Only) Cambridge, MA Boston MSA US Average

 
Source: (8) & (9) 

The impetuses for further exploration of rideshare opportunities at MIT are numerous. 
First, parking on campus is becoming an expensive challenge for the Institute. The 500 leased 175 
parking spaces costs the Institute approximately $1.5M. a year in fees and in recent years, the 
Institute has begun constructing underground, structured parking at an estimated cost of 
$125,000 per space (7). Rideshare promotional efforts may be able to reduce the need for 
expensive parking construction and leasing. Second, the State of Massachusetts has begun a 
long-term project to rehabilitate a number of the bridges between Boston and Cambridge across 180 
the Charles River. Two of the bridges slated for closure and reconstruction, the Longfellow 
Bridge and the BU Bridge, are both in close proximity to MIT and will limit vehicle access to 
campus during the reconstruction phase. Ridesharing could be one important mitigation measure 
to ensure that an acceptable level of mobility is maintained in the southern part of Cambridge 
during the reconstruction process. Third, the Institute has made a commitment through the MIT 185 
Energy Initiative to ‘Walk the Talk’ and identify areas where energy consumption on campus 
can be reduced (10). Vehicle travel to and from campus is not an inconsequential portion of 
MIT’s energy footprint; two separate student theses have estimated contributions of 4 to 14% of 
Institute-wide energy consumption coming from private vehicle travel (7)(11). Ridesharing has 
the ability to provide additional transport options to the MIT community while helping the 190 
Institute ‘Walk the Talk’ on energy efficiency. 
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ANALYTICAL APPROACH FOR RIDESHARE FEASIBILITY 
A four step analytical approach was undertaken to estimate ridesharing potential at MIT: (1) MIT 
commuter survey preparation, (2) spatial analysis of commuter trips, (3) application of realistic 
trip characteristic filters, and (4) selection of feasible pairings. 195 

Several important assumptions have been made during this analysis. First, this approach 
assumes that only two-person carpools are possible. This assumption was made to simplify the 
matching process, however it is not believed to significantly affect the results. The complexity of 
identifying a third or fourth rideshare participant with a similar schedule and the additional travel 
time burden of picking up another passenger is likely to limit the number of feasible rideshares 200 
with three or more people. Second, the approach assumes that a driver is willing to deviate from 
their normal route to MIT to pickup a passenger at their residential location. The prospect of 
drivers and passengers meeting at a mutually beneficial intermediate destination was not 
considered. Once again, this assumption was made to simplify the matching process. Third, it 
was assumed that when a driver deviates to pickup a passenger, the pickup time is zero. This 205 
assumption is certainly unrealistic and understates the commitment the driver is being asked to 
make. Even in instances where the passenger is prompt there is likely to be some perceived, or 
psychological, wait time experienced by the driver. Fourth, the chaining of trips to and from 
campus were ignored. No information on trip chaining behavior was available in the survey.  

MIT Commuter Survey Preparation 210 
MIT undertakes a comprehensive commuter survey every two years to measure commuter 
preferences and changes in commuting over time. The survey is administered to most of the MIT 
community and includes responses from undergraduates, graduate students, faculty, academic 
staff and support staff. The City of Cambridge and the Commonwealth of Massachusetts require 
that the survey be conducted. For this analysis, the 2008 version of the survey was used (8). 215 

In 2008, MIT had approximately 21,800 community members including faculty, research 
staff, support staff, graduate students and undergraduate students. Of the full community, 
approximately 16,600 on-campus members were invited to complete the survey. Of the 5,200 
that were not invited, over half were MIT staff working at the Lincoln Labs facility in Lexington, 
MA, approximately 15 miles NW of the main Cambridge campus. Approximately 10,300 220 
community members completed the survey, representing a response rate of 62%. Completed 
survey responses were further filtered to isolate only community members that (a) commute to 
MIT’s main campus for work, (b) live off-campus, (c) are either faculty or staff (students were 
eliminated from this analysis), and (d) had a residential address that could be properly geo-coded 
into a Latitude-Longitude value. Requirements (a) and (b) ensure that a commuting trip is taking 225 
place. Graduate and undergraduate students were eliminated from this analysis for several 
reasons. Undergraduates at MIT are required to live on-campus, or in Institute-sponsored, off-
campus housing such as fraternities or sororities. The off-campus, undergraduate housing options 
are well served by the MIT-operated campus shuttle bus system. It was assumed that 
undergraduates would rarely, if ever, require a rideshare arrangement to travel to campus. 230 
Graduate students were eliminated because of the assumed variability of their daily schedules. 
The survey does ask for a community member’s arrival time on campus and departure time from 
campus, but only “on a typical day”. For graduate students, it was believed that responses to that 
question would be highly variable day to day and would reduce the value of the analysis. Further, 
graduate students have a much different pattern of residential selection than staff and faculty do. 235 
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Students tend to live closer to campus, reducing their likelihood of choosing ridesharing as a 
mode of travel. 

Two groups of commuters were identified for use in the feasibility analysis; (1) all 
commuters regardless of their mode of travel (labeled “All Modes”), and (2) those commuters 
that traveled to campus as a single occupant driver four or five times during the previous work 240 
week (labeled “Primarily SOV”). Note that the “Primarily SOV” group is a subset of the “All 
Modes” group. While portions of the “All Modes” group already commute using sustainable 
forms of transportation, they were included in the analysis to see what percentage of the MIT 
community could successfully be matched and could possibly participate in ridesharing. The 
“Primarily SOV” subset is the group of greater interest, as they are the ones whose potential 245 
travel behavior change would have the greatest impact on reducing VMT and reducing the need 
for on-campus parking. Table #2 shows the breakdown of the MIT community and the response 
rate to the survey. 

TABLE #2: Makeup of the MIT Community and Responses to the 2008 Survey 

Commuters - All 
Modes

Commuters - Primarily 
SOV

Total ~21,800 16,578 10,273 62.0% 5,061 1,247
Faculty ~1,020 933 467 50.1% 461 130
Staff ~10,500 7,694 4,958 64.4% 4,600 1,117
Graduate Students ~6,150 5,364 3,167 59.0% N/A N/A
Undergraduate Students ~4,150 2,587 1,681 65.0% N/A N/A

Commuters Used in Viability Assessment
Makeup of the MIT Community and Responses to the 2008 Commute Survey

Invited to 
Complete Survey

Completed 
Survey

Response 
Rate

MIT 
Population

 250 
Source: Authors Analysis of (8) 

Spatial Analysis of Commuter Trips 
With 5,061 completed surveys by the targeted groups, including geo-coded residential locations, 
a spatial analysis of commuting trips to MIT was undertaken. A transportation network model of 
the greater Boston area developed in a previous academic course was used in conjunction with 255 
the TransCAD transportation modeling software package. The road network within the Boston 
model includes a value for congested travel time on every road link in the network, as calculated 
by an iterative traffic assignment process undertaken during a previous 4-step transport-modeling 
endeavor. Whereas the University of Toronto approach looked for clusters of commuters at the 
residential end using a GIS-buffer approach, this approach capitalizes on the availability of a 260 
congested road network that allows for the use of a least-cost travel time algorithm to assign 
commuters to a path they would most likely choose to get to MIT, if were seeking to minimize 
their travel time. In clearer terms, while the University of Toronto approach made matches based 
on residential proximity only, the proposed approach makes matches based on a route that 
commuters are likely to choose. The added benefit of this approach is that it allows for the 265 
matching of drivers and passengers mid-trip, along the driver’s path. 

The 5,061 geo-coded commuter records were imported into TransCAD as a series of 
points. One additional point representing the main entrance to the MIT campus at 77 
Massachusetts Avenue was added to the list. The commuter points were linked to the nearest 
roadway intersection on the network using a spatial join. A road network skim of travel time and 270 
travel distance was performed from all commuter points to all other commuter points. Since this 
procedure was essentially taking the travel time and distance from all 5,062 points to all other 
5,062 points, it generated a database table with 25.6M. commuter pairings (5,062 x 5,062), many 
of which have real potential for ridesharing and some of which are not at all feasible. The third 
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step, applying trip characteristic filters, is where only those rideshare pairings that are feasible 275 
are identified. Figure #1 shows an example of the residential locations of commuters in the 
immediate vicinity of MIT. Large points represent the geo-coded residential locations of MIT 
staff and faculty near the MIT Campus. 

 

 280 

FIGURE #1: TransCAD Visualization of the Commuter Survey Records 

Application of Trip Characteristic Filters 
The third step involved filtering the millions of commuter pairings generated in TransCAD down 
to only those that could be reasonably expected to share rides. With the table of 25.6M. records, 
one must first determine the direct distance and travel time to MIT for all 5,061 commuters. 285 
Since MIT’s location was coded as one of the records, a process of extracting a subset of the 
existing data table (those pairings where the MIT node was the destination) was used. One can 
think of these as the SOV distances and travel times for a driver and passenger in a potential 
rideshare arrangement, if they both chose to drive to campus alone. In the rideshare diagram 
shown in Figure #2, these are the segments labeled ‘DirectD’ and ‘DirectP’ for commuters #1 290 
and #2 respectively. The next step involved calculating the carpool distance and travel time. 
Carpool values were assumed to be the distance/time from the ‘driver’s’ residence to the 
‘passenger’s’ residence (the segment labeled ‘Leg1’), plus the distance/time from the 
‘passenger’s’ residence to MIT (the segment ‘DirectP’). At this step in the analysis, no 
restrictions were placed on rideshare roles, so commuters could be identified as drivers or 295 
passengers. The difference in values between the ‘driver’s’ direct trip to MIT (‘DirectD’) and the 
carpool distance/time (‘Leg1’ plus ‘DirectP’) is a particularly important trip characteristic filter 
that will be described later in this section. 
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FIGURE #2: Conceptual Rideshare Diagram 300 
 
A series of filters were applied to isolate only those commuter pairings that were believed to be 
feasible for ridesharing. The following list outlines the filters used and the rationale for applying 
them. 

(a) The ‘driver’ is only willing to accept a deviation of five minutes (5 minutes) or less from 305 
their normal drive-alone travel time. This was the difference between the ‘DirectD’ segment 
travel time and the calculated carpool travel time outlined previously. A five-minute 
threshold was chosen based on previous rideshare survey findings. Li et al. (12) found that 
75% of 2-person carpools in Texas involved a deviation of five minutes or less. Attanucci 
(13) previously found that 51% of members of the MIT community were willing to deviate 310 
no more than five minutes and an additional 29% were willing to deviate between five and 
ten minutes. Note that this filter does not restrict the direction of travel. If a passenger is two 
minutes in the opposite direction from the driver’s residence (and thereby adds a total of four 
minutes to the driver’s journey), the filter suggests that that trip is as likely to occur as one 
that requires a four minute deviation off of the driver’s main route to MIT. While this is 315 
assumed not to be a substantial burden on drivers it could very well be. As such, sensitivity 
analyses were also performed at 2 minute and 10 minute deviation thresholds. 
(b) The ‘driver’ is unwilling to spend more than 150% of his/her drive-alone travel time to 
rideshare to campus. This filter only affects those that are already relatively close to MIT. 
For example, if a driver normally has an eight-minute commute to campus, this filter will 320 
limit the feasible set of passengers to those that add four minutes or less to the driver’s 
journey. For commutes longer than 10 minutes, the “five-minute deviation threshold” filter 
described above supersedes this filter. As such, this filter eliminates relatively few pairings, 
but pairings that are quite unlikely to represent desirable rideshare arrangements. 
(c) ‘Passengers’ within 1 mile of campus are excluded from consideration. Within a distance 325 
of 1 mile, the attractiveness of walking, cycling and transit should be much higher than the 
attractiveness of ridesharing. 
(d) The ‘driver’ in the rideshare arrangement must have access to a vehicle. The 2008 MIT 
Commuter survey asks respondents whether they have access to a private vehicle for daily 
commuting. 330 
(e) The ‘driver’ and ‘passenger’ in a rideshare arrangement must arrive on campus and depart 
from campus within the same 30-minute period. The 2008 survey asks participants to provide 
their arrival/departure time to/from campus on “a typical day”. Respondents are provided 
with 30-minute blocks of time (7:00-7:29am, 5:30-5:59pm, etc.) and are asked to choose only 
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one block. The implication of having both arrival and departure times matching for both the 335 
‘driver’ and ‘passenger’ is that roundtrip, rideshare opportunities are assumed. 

Selection of Feasible Pairings 
At this point, those commuter pairings that are believed to be feasible have been identified. 
However, there are often cases where a driver has the option of picking up multiple passengers, 
or passengers can be matched up with multiple drivers. Adding to the complexity, there is 340 
nothing stopping a commuter from being a driver in one pairing and a passenger in another 
pairing. Since the assumption is that only two people can share a ride at any given time, this step 
requires the specification of a decision variable to select ‘feasible’ pairings, such that no 
commuter (driver or passenger) is paired up more than once on any given day. In more general 
terms, one can think of the output of Step 3 as the full list of feasible pairings that are possible 345 
over the course of a week or month, whereas the purpose of Step 4 is to select only those pairings 
that are possible on any single day. This final step is essentially seeking to maximize the number 
of members of the MIT community that can be paired together by employing an optimization 
process. 

Two approaches were used to identify ‘feasible’ pairings; one approach used the CPLEX 350 
algorithm in the OPL Studio software suite, and the second option involved a simple heuristic 
approach using a standard spreadsheet program. The CPLEX approach involved solving a 
general network flow problem with side constraints to ensure that a commuter was not paired up 
as both a driver and a passenger in separate pairings. For the “All Modes” subset of commuters, 
the objective function used was the maximization of commuter pairs. For the “Primarily SOV” 355 
subset, the objective function used was the maximization of VMT savings. 

The heuristic approach began by sorting the list of pairings from highest to lowest 
potential VMT savings, and then employed an iterative approach of selecting drivers and 
passengers. The first driver-passenger pair with the largest VMT savings was “activated”, and 
both commuters were removed from consideration in all further pairings. Moving onto the next 360 
pairing, both the driver and passenger were checked to see if they were “available” for matching. 
If either the driver or passenger were previously “activated”, the selected pairing was discarded 
and the next pair was considered. This process was repeated for all pairings in the list. The 
decision variable for both subsets of commuters (“All Modes” and “Primarily SOV”) is the 
maximization of commuter pairs, but implicitly VMT savings are also considered given the 365 
initial sorting that took place. 

The two approaches have different strengths and weaknesses. The CPLEX optimization 
approach provides an outcome that is more robust, but requires writing the problem statement in 
the proprietary language of the software, which is relatively time consuming. The heuristic 
approach is quite simple to implement in commonly available spreadsheet programs, is not 370 
particularly time consuming, but provides a sub-optimal set of feasible pairings. Whereas the 
heuristic approach may select a single driver-passenger pair that has relatively high VMT 
savings, the CPLEX approach may identify two pairings, each with relatively smaller VMT 
savings, but where the total savings from both pairings are larger than the single, high VMT 
pairing. For this analysis, both the CPLEX and heuristic results will be reported. 375 
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RIDESHARING VIABILITY AT MIT WITH SENSITIVITY ANALYSES 
Figure #3 summarizes the results from the analysis of rideshare potential among members of the 
MIT community. The top portion of the figure shows the results of the ‘base case’ analysis (five-380 
minute route deviation threshold) and the bottom parts of the figure show the results of the two 
sensitivity analyses (two-minute and ten-minute deviation thresholds). The results for the “All 
Modes” subset of commuters are on the left side of the figures and the “Primarily SOV” subset 
on the right side. The number of feasible pairings and the number of pairings possible on a single 
day are reported, along with the associated percentages of the total commuter population 385 
evaluated. For the “Primarily SOV” subset, the daily VMT savings achievable from ridesharing 
are also provided.
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CPLEX Optimiz. Heuristic CPLEX Optimiz. Heuristic

All Commuters

Commuters - Ridesharing is 
Feasible

Commuters - Ridesharing 
Feasible on a Single Day

3,670 (72.5%) 2,942 (58.1%) 832 (66.8%) 800 (64.2%)

Avg. Daily SOV Commute 
VMT (All SOV Commuters)

Daily VMT Reduction 3,279 (19.2%) 3,218 (18.8%)

1,247

977 (78.3%)

17,104

Commuters - All Modes Commuters - Primarily SOV

4,228 (83.5%)

Base Case: Five-Minute Route Deviation

5,061

 
 390 

CPLEX Optimiz. Heuristic CPLEX Optimiz. Heuristic

All Commuters

Commuters - Ridesharing is 
Feasible

Commuters - Ridesharing 
Feasible on a Single Day

2,920 (57.7%) 2,536 (50.1%) 440 (35.3%) 432 (34.6%)

Avg. Daily SOV Commute 
VMT (All SOV Commuters)

Daily VMT Reduction 1,487 (8.7%) 1,468 (8.6%)

Sensitivity Analysis: Two-Minute Route Deviation

Commuters - All Modes Commuters - Primarily SOV

5,061 1,247

3,529 (69.7%) 608 (48.8%)

17,104

 

CPLEX Optimiz. Heuristic CPLEX Optimiz. Heuristic

All Commuters

Commuters - Ridesharing is 
Feasible

Commuters - Ridesharing 
Feasible on a Single Day

3,904 (77.1%) N/A 1,080 (86.6%) 1,034 (82.9%)

Avg. Daily SOV Commute 
VMT (All SOV Commuters)

Daily VMT Reduction 4,640 (27.1%) 4,518 (26.4%)

5,061 1,247

Sensitivity Analysis: Ten-Minute Route Deviation

Commuters - Primarily SOV

4,452 (88.0%) 1,151 (92.3%)

17,104

Commuters - All Modes

 
 

FIGURE #3: Summary of Rideshare Potential at MIT - Base Case, Two-Minute Route Deviation & Ten-Minute Route Deviation 
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There are a number of important insights that follow from this analysis. To begin, the percentage 395 
of the MIT community that can feasibly share rides is very high. Depending on the driver 
deviation assumptions, between 70% and 88% of the surveyed MIT community has the option of 
engaging in ridesharing. For those whose primary mode of commuting is SOV travel, 
approximately 49% to 92% could rideshare if they chose to do so, again depending on the driver 
deviation assumptions. For the Base Case “All Modes” group of commuters, 83% of drivers 400 
would have to deviate less than two (2) miles. 

On a daily basis, approximately 50% to 77% of the MIT Community could rideshare 
depending on the model assumptions. This is substantially higher than the current share of the 
community that chooses to rideshare (8.2%). In terms of VMT reduction potential, the model 
suggests that 9% to 27% of daily, commuter-based VMT could be reduced through choosing to 405 
rideshare, with a base-case estimate of a 19% daily reduction in VMT. If one now considers the 
0.4% (2) and 2% (1) metro-wide, VMT reductions quoted in previous reports, it becomes clear 
that ridesharing’s potential differs markedly depending on the physical/institutional scale 
considered (metropolitan area vs. an organization). 

Finally, from a methodological standpoint, it is interesting to consider the difference 410 
between the CPLEX optimization and simple heuristic approaches to identifying the feasible 
rideshare pairs on a single day. In terms of the maximization of pairings, one can clearly see that 
larger datasets favor the optimization approach. For smaller datasets, the difference between the 
two approaches is less pronounced. For the determination of VMT savings, the two approaches 
yield remarkably similar results. 415 

MODELED POTENTIAL VS. OBSERVED BEHAVIOR 
While the aggregate results of rideshare potential at MIT are interesting, the comparison of the 
modeled results against the observed travel behavior of the MIT community is perhaps more 
interesting. The matrix shown in Figure #4 compares the modeled and observed travel behavior 
for the 5,061 commuters considered in the ‘base case’ analysis. Along the left side, community 420 
members are identified by their modeled rideshare feasibility. Along the top, they are identified 
by whether they engaged in any form or ridesharing (carpool or vanpool) at least once during the 
previous workweek. The “All Modes” group of commuters was used rather than the “Primarily 
SOV” subset because the analysis is attempting to compare modeled rideshare behavior to 
observed commuter rideshare behavior, regardless of whether or not these commuters are the 425 
ones that would be targeted for an MIT community-based rideshare initiative. If the analysis was 
limited to the “Primarily SOV” subset, it would be attempting to compare modeled and observed 
rideshare behavior for a subset that was selected specifically because they do not currently 
rideshare, largely defeating the purpose of the analysis. However, it would be false to state that 
3,615 commuters should be targeted in a rideshare initiative. This group includes community 430 
members that already use sustainable modes of travel to get to MIT; they walk, cycle or take 
transit. From a policy standpoint, the 946 frequent SOV drivers should be the primary targets for 
increased rideshare participation. 
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Ridesharing 
Not Feasible
Ridesharing 

Feasible

946 'Primarily SOV'

613
Modelled Results

Comparison of Modeled Rideshare Potential vs. Observed Commute Behavior ("All Modes")

Did not Share a Ride 
During Previous Week

632

3,615

Observed Commute Behavior

201

Shared a Ride during the 
Previous Week

 
Source: Author Analysis of (8) 435 

FIGURE #4: Modeled Rideshare Potential vs. Observed Commuting Behavior 
 

At first glance, the 201 community members that shared a ride when the model suggests 
they should not have (top-left quadrant) is concerning as it suggests deficiencies or missing 
variables in the model. Two possible explanations for this include (a) filters that were too 440 
restrictive, and/or (b) the influence of unobserved human preferences, particularly the incidence 
of ridesharing with family members not affiliated with MIT. It is possible that the filters applied 
were too restrictive in identifying those commuters most likely to rideshare. A more likely 
explanation is that some of the rideshare trips undertaken were with family members where at 
least one member of the rideshare was not affiliated with MIT, and therefore did not complete 445 
the survey. Previous research has found that between 25% and 80% of ridesharing trips are intra-
household (12)(13)(14)(15)(16), or between family members, so it seems possible that at least 
some of these shared rides are family based. Unfortunately, the MIT Commuter Survey does not 
ask respondents to indicate with whom they shared a ride. 

MODEL SHORTCOMINGS 450 
Even though the MIT Commute Survey contains very detailed information on travel habits, 
many of the drawbacks of this modeling effort actually relate to a lack of detailed information on 
certain aspects of commute behavior among community members. For example, the model 
assumed that commuters make direct trips to and from home. In reality, trip chaining is quite 
prevalent and reduces the number of commuters that can reasonably rideshare. Additionally, 455 
intra-week schedule variability is quite common. Commuters may modify their departure times 
throughout the week based on various home or work commitments. The MIT survey was not 
sufficiently detailed enough to answer questions about intra-week variability; it only asked for 
arrival and departures times to/from campus on “a typical day”. Further, this analysis has focused 
exclusively on a single, large institution. In many ways, MIT’s physical location, community 460 
size and transport options are unique. While the results are important for MIT, they may not 
necessarily transfer to other subsets of the MIT community that did not complete the survey, or 
to other institutions. In order to gain a better understanding of rideshare potential and relative 
importance of trip characteristics and human attitudes, similar modeling efforts with 
organizations of different sizes and in different geographic locations would be desirable. 465 
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POLICY RECOMMENDATIONS 
The substantial difference in modeled rideshare potential and the observed level of ridesharing 
suggests that human preferences, or attitudes, appear to be a much larger barrier to increased 
rideshare participation than incompatible trip characteristics. The high level of rideshare 
potential within the MIT community suggests that policy makers may want to target large 470 
organizations for increased rideshare participation. Large organizations have some key 
characteristics that make them amenable to rideshare promotion including a large ‘social 
network’ of employees that are likely to know one and other (thereby reducing safety concerns) 
and be more willing to share rides, a common destination (making the matching process simpler 
& increasing match rates), the ability to offer benefits deemed valuable to employees (such as 475 
reduced parking costs and flextime), and the legitimacy to gather large amounts of personal 
travel information from employees. Large organizations that have detailed travel information 
also have the ability to engage employees in customized travel planning. Providing highly 
tailored travel information, such as the variety of travel modes available to a specific employee, 
and/or the number of fellow employees that an individual could potentially rideshare with, 480 
allows firms to provide an unconventional benefit while simultaneously encouraging travel 
behavior changes. 
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